PTD Process Engineer Intel Corporation Ronler Acres Campus 4 Hillsboro, OR 97124 URL:Linkedin Profile

EDUCATION

 Doctor of Philosophy – Electrical Engineering
 August 2011 (3.8/4.0)

 Iowa State University, Ames, Iowa, USA
 Thesis Title: Increasing the efficiency of organic solar cells by Photonic and Electrostatic-field

 enhancements
 (Research Excellence Award, 2011)

 Advisor: Prof. Sumit Chaudhary
 (Research Excellence Award, 2011)

Bachelor of Technology – Materials and Metallurgical EngineeringJune 2007 (3.2/4.0)Indian Institute of Technology, Kanpur, India(Best Project Award, 2007)

EXPERIENCE

Intel Corporation, Hillsboro, Oregon USA

PTD (R&D) Process Development Engineer.

- Portland Technology Development Senior Process engineer in the Copper Barrier/Seed module developing 22, 14, 10, and 7 nm process technologies.
- Drove the development of the process, hardware, and operational systems used for all PVD metal deposition steps for Intel's interconnect microprocessor technology.
- Close collaboration with Integration and Yield engineers to determine technology requirements.
- Partnered with equipment suppliers to drive the development of the hardware and process.
- Transfer of the technology to Intel's 300 mm factories worldwide.
- Demonstrated new barrier for 10nm technology and lead its process qualification and implementation. (Divisional Award)
- Routinely applied SPC, JMP and statistical Data Analytics to monitor trends and find causes for signals to improve device yeild.

Iowa State University, Ames, Iowa USA

Graduate Research Assistant, Dept. of Electrical and Computer Engg.	Aug. 2007 - Aug. 2011
Associate, Department of Energy - Ames Laboratory	Aug. 2007 - Present

- Contributed significantly to PhD adviser's National Science Foundation Career proposal titled "Utilizing Ferroelectrics for Multifaceted Device Engineering of Polymer Solar Cells", which was eventually awarded \$400,000 funding for 5 years.
- Implemented for the first time incorporation of ferroelectrics in polymer solar cells and improved the efficiency by 50 % by virtue of enhanced electrostatic field in the device.
- Simulated and implemented a novel device-design for grating based textured organic solar cells to increase the power conversion efficiency by 20% and absorption at the band-edge by 100%.
- Established the relationship between recombination mechanism, the density of defect states and active-layer film growth rate in organic solar cells using characterization techniques like I-V, C-V, C-F, Quantum efficiency, Impedance and luminescence.

Voice: (503) 849-9637 Email: kanwar.s.nalwa@intel.com Alt: kansi2004@gmail.com

Aug. 2011 - Present

- Investigated effect of doping in amorphous silicon hybridized with organic based photovoltaics, on charge recombination at the organic/inorganic interface.
- Demonstrated for the first time photoluminescence based Bio-chemical sensor with organic photodetector operational in lifetime mode.
- A new methodology was implemented to fabricate ultra-long metallic nanoribbons and nanowires for transparent electrodes.
- Probed memristor characteristics of anodized titania thin film on nanometer scale using conductance-atomic force microscopy.
- Served as the lead graduate student/critical resource for projects funded by DOE Ames laboratory and state of Iowa's Office of Energy Independence.
- Initiated nanotechnology and device research, installation/maintenance of instrumentation (Glove box, Atomic Force Microscope) and developed process protocols in a newly founded research lab.
- Mentored undergraduate/graduate researchers to enable their swift orientation into research areas.

HONORS & AWARDS

- Recieved 3 Intel divisional awards for innovations in contact and interconnect process development down to 7nm feature size in 2015, 2017 and 2018.
- Awarded Research Excellence Award (to recognize $\leq 10\%$ Ph.D. graduates) by Iowa State University in 2011.
- One of the 12 graduate students in the country to recieve graduate student support of \$1000 for attending USC-DOE conference on Materials for Energy Applications, Los Angeles, CA, March 30-April 1, 2011.
- Research featured as news in Material Views ('*High-Efficiency Polymer Solar Cells on Textured Substrates*' Dec 3, 2010) - a Wiley-VCH news service.
- Research featured as news by The Tribune (Iowa newspaper), Science Daily, Physorg.com, Eureka Alert (AAAS, the science society) and Iowa State University, in Dec 2010.
- Research featured in news by Institute of Physics ('Long metallic nanowires fabricated for transparent electrode tests', nanotechweb.org, Aug. 4, 2010)
- Research poster nominated for Best Poster Award in Materials Research Society Fall Meeting, Boston, MA, Dec. 2009. (Total 10 nominees in 200 presenters).
- Awarded the Best Bachelor of Technology Project in the Department of Materials and Metallurgical Engineering (2007-08), by the Indian Institute of Technology, Kanpur.
- Was one of the 12 shortlisted candidates (all over India) for the prestigious Innovative Student Projects Award 2007, by Indian National Academy of Engineering at bachelor's level.
- Received \$200 cash award from IIT Kanpur (India) for publishing in a peer reviewed International journal (Journal of Applied Physics) as an undergraduate student.
- First prize in poster presentation in XIVth National Seminar on Ferroelectrics Dielectrics 2006, I.I.T. Kharagpur, India.
- First prize in poster presentation in Non Ferrous category, at NMD-ATM 2005 conference, Chennai, India.

PUBLICATIONS

Invited Talks:

[*invited speaker]

3. K. S. Nalwa, R. C. Mahadevapuram, and S. Chaudhary^{*}, "Controlling defect density in polymer-fullerene bulk heterojunction solar cells by optimizing growth conditions", *TMS*

2011 - 140th Annual Meeting and Exhibition, San Diego, CA, Feb. 27 - March 3, 2011.

- 2. K. S. Nalwa^{*}, "Increasing the efficiency of organic solar cells by photonic and electrostatic field enhancements", *seminar at Intel Corporation*, Hillsboro, OR, Nov. 8, 2010
- M. Jeffries-El*, J. F. Mike, K. S. Nalwa, A. Makowski, D. Putnam, and S. Chaudhary, "Design and synthesis of new thiophene containing polymers for use in photovoltaic applications", *American Chemical Society 239th National Meeting*, San Francisco, March 21-26, 2010.

Patents and Invention Disclosures:

- 2. K. S. Nalwa, and S. Chaudhary, "Organic photovoltaic device with ferroelectric dipole and method of making same," U.S. Patent No. 10,038,142 (Granted July 31, 2018).
- S. Chaudhary, K. M. Ho, J. M. Park, K. S. Nalwa, and W. Leung, "Textured micrometer scale templates as light managing fabrication platform for organic solar cells," U.S. Patent No. 9,401,442 (Granted July 26, 2016).

Journal Papers:

- 14. J. Carr, K. S. Nalwa, R. C. Mahadevapuram, Y. Chen, J. Anderegg, and S. Chaudhary, "Plastic-syringe induced silicone contamination in organic photovoltaic fabrication: implications for small-volume additives", ACS Applied Materials and Interfaces 2012, vol. 4 (6), pp 2831–2835, 2012. [American Chemical Society. Impact factor 8.1]
- K. S. Nalwa, J. Carr, R. C. Mahadevapuram, H. K. Kodali, S. Bose, Y. Chen, J. W. B. Petrich, B. Ganapathysubramanian, and S. Chaudhary, "Enhanced charge separation in organic photovoltaic films doped with ferroelectric dipoles" *Energy and Environmental Science*, vol. 5 (5), pp. 7042-7049, 2012. [Royal Society of Chemistry. Impact factor 30.1]
- K. S. Nalwa, H. K. Kodali, B. Ganapathysubramanian, and S. Chaudhary, "Dependence of recombination mechanisms and strength on processing conditions in polymer solar cells" *Applied Physics Letters*, vol. 99, 263301, 2011. [American Physical Society. Impactfactor 3.49]
- P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, S. Chaudhary, K. M. Ho, and K. Constant, "A new architecture for transparent electrodes: Relieving the tradeoff between electrical conductivity and optical transmittance", *Advanced Materials*, vol. 23, pp. 2469-2473, 2011. [Wiley-VCH. Impact factor 21.95]
- K. S. Nalwa, R. C. Mahadevapuram, and S. Chaudhary, "Growth rate dependent trap density in polythiophene:fullerene solar cells and its implications", *Applied Physics Letters*, vol. 98, 093306, 2011. [American Physical Society. Impact factor 3.49] Also in *Virtual Journal of Nanoscale Science and Technology*, vol. 23 (11), 2011.
- J. F. Mike, K. S. Nalwa, A. Makowski, D. Putnam, A. L. Tomlinson, S. Chaudhary, and M. Jeffries-El, "Synthesis, characterization and photovoltaic properties of poly(thiophenevinylene) benzobisoxazoles", *Physical Chemistry Chemical Physics*, vol. 13, pp. 1338-1344, 2011. [Royal Society of Chemistry. Impact factor 3.91]
- K. S. Nalwa, J. M. Park, K. M. Ho, and S. Chaudhary, "On realizing higher efficiency polymer solar cells on a textured substrate platform", *Advanced Materials*, vol. 23, pp. 112-116, 2011. [Wiley-VCH. Impact factor 21.95] (Featured as news on materialviews.com)
- K. S. Nalwa, Y. Cai, A. L. Thoeming, J. Shinar, R. Shinar, and S. Chaudhary, "Polythiophenefullerene based photodetectors: tuning of spectral response and application in photoluminescence based bio(chemical) sensors", *Advanced Materials*, vol. 22, pp. 4157-4161, 2010. [Wiley-VCH. Impact factor 21.95]

- K. S. Nalwa, and S. Chaudhary, "Design of light-trapping microscale-textured surfaces for efficient organic solar cells", *Optics Express*, vol. 8(5), pp. 5168-5178, 2010. [Optical Society of America. Impact factor 3.36]
- J. M. Park, K. S. Nalwa, W. Leung, K. Constant, S. Chaudhary, and K. M. Ho, "Fabrication of metallic nanowires and nanoribbons using laser interference lithography and shadow lithography", *Nanotechnology*, vol. 21, pp. 215301, 2010. [Institute of Physics. Impact factor 3.40]
- K. Miller, K. S. Nalwa, A. Bergured, N. Neihart, and S. Chaudhary "Memristive behavior in thin anodic titania", *IEEE Electron Device Letters*, vol. 31, pp. 737-739, 2010. [Impact factor 3.43]
- D. Maurya, H. Thota, K. S. Nalwa, and A. Garg, "BiFeO3 ceramics synthesized by mechanical activation assisted versus conventional solid-state-reaction process: A comparative study", *Journal of Alloys and Compounds*, vol. 477, pp. 780-784, 2009. [6 citations] [Elsevier. Impact factor 3.78]
- K. S. Nalwa, and A. Garg, "Phase evolution, magnetic and electrical properties in Smdoped bismuth ferrite", *Journal of Applied Physics*, vol. 103, pp. 044101, 2008. [11 citations] [American Physical Society. Impact factor 2.176]
- K. S. Nalwa, A. Garg, and A. Upadhyaya, "Effect of samarium doping on the properties of solid-state-synthesized multiferroic bismuth ferrite", *Materials Letters*, vol. 62, pp. 878-881, 2008. [20 citations] [Elsevier. Impact factor 2.69]

Conference Proceedings/Presentations:

- R. C. Mahadevapuram, K. S. Nalwa, V. Dalal, and S. Chaudhary, "Photovoltaics using doped and undoped amorphous silicon heterojunctions with conjugated polymers", *TMS* 2011 Annual Meeting and Exhibition, San Diego, CA, Feb 27 - March 3, 2011.
- 6. K. S. Nalwa, J. M. Park, W. Leung, K. Constant, K. M. Ho, and S. Chaudhary, "Textured substrate based organic solar cell for higher absorption and improved performance", *Materials Research Society Symposium Proceedings 2010.* (BEST POSTER NOMINEE)
- A. L. Thoeming, K. S. Nalwa, R. Liu, J. Shinar, R. Shinar, and S. Chaudhary, "Single substrate integration of organic light-emitting diode, organic photodetector and sensing element for photoluminescence based bio(chemical) sensors", SPIE Optics+Photonics, San Diego, CA, August 2010. (Oral presentation)
- 4. K. Miller, K. S. Nalwa, A. Bergured, N. Neihart, and S. Chaudhary, "Tunable anodizedtitania memristors: Study on effects of annealing and extent of anodization", *Materials Research Society Spring Meeting 2010*, San Francisco, CA. (Oral presentation)
- K. S. Nalwa, Y. Cai, A. L. Thoeming, R. Shinar, J. Shinar, and S. Chaudhary, "Photoluminescence based sensors on all organic platform (organic-light-emitting-diode/ dye:analyte/ organic-photodetectors)", *Materials Research Society Spring Meeting 2010*, San Francisco, CA. (Poster presentation)
- R. C. Mahadevapuram, K. S. Nalwa, V. Dalal, and S. Chaudhary, "Intrinsic and doped amorphous silicon hybridized with polymer-based photovoltaics: status, our results, and opportunities", *Materials Research Society Spring Meeting 2010*, San Francisco, CA. (Oral presentation)
- K. S. Nalwa, and S. Chaudhary, "Design of three-dimensional textured organic solar cell" Materials Research Society Symposium Proceedings 2009, 1168, 1168-P05-17.